
CertiK Assessed on Jul 7th, 2025

RT-Pay
Security Assessment

Executive Summary

Highlighted Centralization Risks

Vulnerability Summary

2 Centralization 2 Acknowledged
Centralization findings highlight privileged roles &

functions and their capabilities, or instances where the

project takes custody of users’ assets.

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

0 Major
Major risks may include logical errors that, under specific

circumstances, could result in fund losses or loss of

project control.

1 Medium 1 Resolved Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

1 Minor 1 Resolved

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

SUMMARY RT-PAY

CertiK Assessed on Jul 7th, 2025

RT-Pay

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

ERC-20

ECOSYSTEM

Tron (TRX)

METHODS

Formal Verification, Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 07/07/2025

KEY COMPONENTS

N/A

CODEBASE
source

View All in Codebase Page

COMMITS
150008c33aa18a1682afc6bf32a233fa7828bfd1

View All in Codebase Page

Privileged role can remove users' tokens Transfers can be paused

Privileged role can mint tokens Has blacklist/whitelist

5
Total Findings

3
Resolved

0
Partially Resolved

2
Acknowledged

0
Declined

https://github.com/rt-pay/tkn/tree/150008c33aa18a1682afc6bf32a233fa7828bfd1/contracts
https://github.com/rt-pay/tkn/tree/150008c33aa18a1682afc6bf32a233fa7828bfd1/contracts

1 Informational 1 Resolved

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY RT-PAY

TABLE OF CONTENTS RT-PAY

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Findings

RTP-02 : Centralized Balance Manipulation

RTP-03 : Centralization Risks

RTP-07 : Weak Constraint on `numConfirmationsRequired`

RTP-05 : Missing 0 Address Check in `replaceOwner()` Function

RTP-06 : Missing Emit Events

Optimizations

RTP-01 : Cache array length

Formal Verification

Considered Functions And Scope

Verification Results

Appendix

Disclaimer

TABLE OF CONTENTS RT-PAY

CODEBASE RT-PAY

Repository

source

Commit

150008c33aa18a1682afc6bf32a233fa7828bfd1

CODEBASE RT-PAY

https://github.com/rt-pay/tkn/tree/150008c33aa18a1682afc6bf32a233fa7828bfd1/contracts
https://github.com/rt-pay/tkn/tree/150008c33aa18a1682afc6bf32a233fa7828bfd1/contracts

AUDIT SCOPE RT-PAY

2 files audited 2 files with Acknowledged findings

ID Repo File SHA256 Checksum

MSW rt-pay/tkn MultiSigWallet.sol
8904f653f4e94cc2450c7131b0aec5e882c6e7

43ed6447413331f3ac4fc79f74

TKN rt-pay/tkn TKN.sol
ff1c3693dada46fe9e20d34b903c05bd66d5b3

1fd23117a5f1892212fdf478d1

AUDIT SCOPE RT-PAY

APPROACH & METHODS RT-PAY

This report has been prepared for RT-Pay to discover issues and vulnerabilities in the source code of the RT-Pay project as

well as any contract dependencies that were not part of an officially recognized library. A comprehensive examination has

been performed, utilizing Static Analysis, Formal Verification, and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS RT-PAY

FINDINGS RT-PAY

This report has been prepared to discover issues and vulnerabilities for RT-Pay. Through this audit, we have uncovered 5

issues ranging from different severity levels. Utilizing the techniques of Static Analysis, Formal Verification & Manual Review

to complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

RTP-02 Centralized Balance Manipulation Centralization Centralization Acknowledged

RTP-03 Centralization Risks Centralization Centralization Acknowledged

RTP-07
Weak Constraint On

numConfirmationsRequired
Logical Issue Medium Resolved

RTP-05
Missing 0 Address Check In

replaceOwner() Function

Volatile Code,

Inconsistency
Minor Resolved

RTP-06 Missing Emit Events Coding Style Informational Resolved

FINDINGS RT-PAY

5
Total Findings

0
Critical

2
Centralization

0
Major

1
Medium

1
Minor

1
Informational

RTP-02 CENTRALIZED BALANCE MANIPULATION

Category Severity Location Status

Centralization Centralization TKN.sol: 50, 54 Acknowledged

Description

In the contract RUBx , the role MINTER_ROLE has the authority to update the token balance of an arbitrary account without

sanity restriction.

Any compromise to the MINTER_ROLE account or the DEFAULT_ADMIN_ROLE which can set MINTER_ROLE may allow a

hacker to take advantage of this authority and manipulate users' balances. For example, The hacker could also update

his/her balance to a large number, sell these tokens, and cause the token price to drop.

Recommendation

We recommend the team makes efforts to restrict access to the private key of the privileged account. A strategy of multi-

signature (⅔, ⅗) wallet can be used to prevent a single point of failure due to a private key compromise. In addition, the

team should be transparent and notify the community in advance whenever they plan to mint more tokens or engage in

similar balance-related operations.

Here are some feasible short-term and long-term suggestions that would mitigate the potential risk to a different level and

suggestions that would permanently fully resolve the risk:

Short Term:

A multi signature (⅔, ⅗) wallet mitigate the risk by avoiding a single point of key management failure.

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to a private key

compromised;

AND

A medium/blog link for sharing the time-lock contract and multi-signers' addresses information with the community.

For remediation and mitigated status, please provide the following information:

Provide the gnosis address with ALL the multi-signer addresses for the verification process.

Provide a link to the medium/blog with all of the above information included.

Long Term:

A DAO for controlling the operation mitigate the risk by applying transparency and decentralization.

RTP-02 RT-PAY

Introduction of a DAO, governance, or voting module to increase decentralization, transparency, and user

involvement;

AND

A medium/blog link for sharing the multi-signers' addresses, and DAO information with the community.

For remediation and mitigated status, please provide the following information:

Provide the gnosis address with ALL the multi-signer addresses for the verification process.

Provide a link to the medium/blog with all of the above information included.

Permanent:

The following actions can fully resolve the risk:

Renounce the ownership and never claim back the privileged role.

OR

Remove the risky functionality.

OR

Add minting logic (such as a vesting schedule) to the contract instead of allowing the owner account to call the

sensitive function directly.

Note: we recommend the project team consider the long-term solution or the permanent solution. The project team shall

make a decision based on the current state of their project, timeline, and project resources.

Alleviation

[RT-Pay, 07/10/2025]: Issue acknowledged. I won't make any changes for the current version.

RTP-02 RT-PAY

RTP-03 CENTRALIZATION RISKS

Category Severity Location Status

Centralization Centralization
MultiSigWallet.sol: 79, 98, 112, 134, 218, 236, 249, 2

67; TKN.sol: 46, 50, 54
Acknowledged

Description

In the contract RUBx , the role MINTER_ROLE / LOCK_ROLE has authority over the functions shown in the diagram below.

Additionally, the DEFAULT_ADMIN_ROLE has the authority to set or revoke MINTER_ROLE / LOCK_ROLE / BLACKLIST . Any

compromise to the DEFAULT_ADMIN_ROLE / MINTER_ROLE / LOCK_ROLE account may allow the hacker to take advantage of

this authority and set the lock status, mint tokens to a specified address, and burn a specified amount of token from an

arbitrary address.

Function State Variables

Function Internal CallsAuthenticated Role

Function Internal Calls

setLock lock

mint _mint_role

burn _burn

In the contract MultiSigWallet , the role _owner has authority over the functions shown in the diagram below. Any

compromise to the _owner account may allow the hacker to take advantage of this authority and confirm a transaction, add

a new transaction to the transactions array, revoke a transaction confirmation, or execute a specified transaction. Note that

this contract being a multisig wallet already partially mitigates the risk.

RTP-03 RT-PAY

Authenticated Role

Function State Variables

Function

Function Internal Calls

Function

State Variables

External Calls

External Calls

_owner

confirmTransaction

executeTransaction

submitTransaction

revokeConfirmation

isConfirmed

.call

Transaction

transactions.push

isConfirmed

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

RTP-03 RT-PAY

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[RT-Pay, 07/10/2025]: Issue acknowledged. I won't make any changes for the current version.

RTP-03 RT-PAY

RTP-07 WEAK CONSTRAINT ON numConfirmationsRequired

Category Severity Location Status

Logical Issue Medium MultiSigWallet.sol: 57~58 Resolved

Description

The only constraint on the numConfirmationsRequired in the MultiSigWallet contract is that it is greater than 0 and no

greater than the number of owners. Generally, an effective multisig would require signatures from more than half of all

owners, such as a 2/3 or 3/5 multisig. There's no such enforcement in the MultiSigWallet contract.

Recommendation

Consider including additional constraint on the numConfirmationsRequired to be more than half of the owner count.

Alleviation

[RT-Pay, 07/10/2025]: Issue acknowledged. Changes have been reflected in the commit hash: https://github.com/rt-

pay/rubx/commit/a331f477bd8dcdab3740c1d4b66433277420547f

RTP-07 RT-PAY

https://github.com/rt-pay/rubx/commit/a331f477bd8dcdab3740c1d4b66433277420547f

RTP-05 MISSING 0 ADDRESS CHECK IN replaceOwner()

FUNCTION

Category Severity Location Status

Volatile Code, Inconsistency Minor MultiSigWallet.sol: 218~232, 240 Resolved

Description

The addOwner() function has a notNull(owner) condition to ensure that the owner being added is not address(0) .

However, there's no such check in the replaceOwner() function, which makes it possible to replace a non-zero address

owner with a zero-address owner, thus breaking the intended design.

Recommendation

We recommend adding the notNull(newOwner) check in the replaceOwner() function.

Alleviation

[RT-Pay, 07/10/2025]: Issue acknowledged. Changes have been reflected in the commit hash: https://github.com/rt-

pay/rubx/commit/a331f477bd8dcdab3740c1d4b66433277420547f

RTP-05 RT-PAY

https://github.com/rt-pay/rubx/commit/a331f477bd8dcdab3740c1d4b66433277420547f

RTP-06 MISSING EMIT EVENTS

Category Severity Location Status

Coding Style Informational MultiSigWallet.sol: 218, 236, 249, 267; TKN.sol: 46 Resolved

Description

There should always be events emitted in sensitive functions that are controlled by centralization roles.

Recommendation

It is recommended to emit events in sensitive functions that are controlled by centralization roles.

Alleviation

[RT-Pay, 07/10/2025]: Issue acknowledged. Changes have been reflected in the commit hash: https://github.com/rt-

pay/rubx/commit/a331f477bd8dcdab3740c1d4b66433277420547f

RTP-06 RT-PAY

https://github.com/rt-pay/rubx/commit/a331f477bd8dcdab3740c1d4b66433277420547f

OPTIMIZATIONS RT-PAY

ID Title Category Severity Status

RTP-01 Cache Array Length Coding Issue Optimization Resolved

OPTIMIZATIONS RT-PAY

https://acc.audit.certikpowered.info/project/7d12b3f0-4585-11f0-96a1-e993dbc184ae/report/new?fid=1751855645926

RTP-01 CACHE ARRAY LENGTH

Category Severity Location Status

Coding Issue Optimization MultiSigWallet.sol: 224 Resolved

Description

The for loop uses the length of the owners storage array in each loop iteration, which costs more gas due to repeated

storage reads.

Recommendation

Cache the lengths of storage arrays if they are used and not modified in for loops.

Alleviation

[RT-Pay, 07/10/2025]: Issue acknowledged. Changes have been reflected in the commit hash: https://github.com/rt-

pay/rubx/commit/a331f477bd8dcdab3740c1d4b66433277420547f

RTP-01 RT-PAY

https://github.com/rt-pay/rubx/commit/a331f477bd8dcdab3740c1d4b66433277420547f

FORMAL VERIFICATION RT-PAY

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire

contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they

guarantee that the contract behaves as specified by the property. As part of this audit, we applied formal verification to prove

that important functions in the smart contracts adhere to their expected behaviors.

Considered Functions And Scope

In the following, we provide a description of the properties that have been used in this audit. They are grouped according to

the type of contract they apply to.

Verification of ERC-20 Compliance

We verified properties of the public interface of those token contracts that implement the ERC-20 interface. This covers

Functions transfer and transferFrom that are widely used for token transfers,

functions approve and allowance that enable the owner of an account to delegate a certain subset of her tokens

to another account (i.e. to grant an allowance), and

the functions balanceOf and totalSupply , which are verified to correctly reflect the internal state of the contract.

The properties that were considered within the scope of this audit are as follows:

Property Name Title

erc20-transfer-never-return-false transfer Never Returns false

erc20-allowance-change-state allowance Does Not Change the Contract's State

erc20-balanceof-change-state balanceOf Does Not Change the Contract's State

erc20-transferfrom-fail-exceed-balance
transferFrom Fails if the Requested Amount Exceeds the Available

Balance

erc20-transferfrom-fail-exceed-allowance
transferFrom Fails if the Requested Amount Exceeds the Available

Allowance

erc20-transferfrom-correct-allowance transferFrom Updated the Allowance Correctly

erc20-transferfrom-correct-amount transferFrom Transfers the Correct Amount in Transfers

erc20-transfer-correct-amount transfer Transfers the Correct Amount in Transfers

erc20-totalsupply-change-state totalSupply Does Not Change the Contract's State

erc20-allowance-correct-value allowance Returns Correct Value

FORMAL VERIFICATION RT-PAY

Property Name Title

erc20-approve-succeed-normal approve Succeeds for Valid Inputs

erc20-allowance-succeed-always allowance Always Succeeds

erc20-totalsupply-succeed-always totalSupply Always Succeeds

erc20-balanceof-correct-value balanceOf Returns the Correct Value

erc20-transferfrom-never-return-false transferFrom Never Returns false

erc20-transfer-revert-zero transfer Prevents Transfers to the Zero Address

erc20-transferfrom-revert-zero-argument transferFrom Fails for Transfers with Zero Address Arguments

erc20-transfer-exceed-balance transfer Fails if Requested Amount Exceeds Available Balance

erc20-approve-correct-amount approve Updates the Approval Mapping Correctly

erc20-transfer-false If transfer Returns false , the Contract State Is Not Changed

erc20-totalsupply-correct-value totalSupply Returns the Value of the Corresponding State Variable

erc20-balanceof-succeed-always balanceOf Always Succeeds

erc20-approve-revert-zero approve Prevents Approvals For the Zero Address

erc20-transferfrom-false If transferFrom Returns false , the Contract's State Is Unchanged

erc20-approve-false If approve Returns false , the Contract's State Is Unchanged

erc20-approve-never-return-false approve Never Returns false

Verification Results

For the following contracts, formal verification established that each of the properties that were in scope of this audit (see

scope) are valid:

Detailed Results For Contract RUBx (contracts/TKN.sol) In Commit
150008c33aa18a1682afc6bf32a233fa7828bfd1

FORMAL VERIFICATION RT-PAY

Verification of ERC-20 Compliance

Detailed Results for Function transfer

Property Name Final Result Remarks

erc20-transfer-never-return-false True

erc20-transfer-correct-amount True

erc20-transfer-revert-zero True

erc20-transfer-exceed-balance True

erc20-transfer-false True

Detailed Results for Function allowance

Property Name Final Result Remarks

erc20-allowance-change-state True

erc20-allowance-correct-value True

erc20-allowance-succeed-always True

Detailed Results for Function balanceOf

Property Name Final Result Remarks

erc20-balanceof-change-state True

erc20-balanceof-correct-value True

erc20-balanceof-succeed-always True

FORMAL VERIFICATION RT-PAY

Detailed Results for Function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-fail-exceed-balance True

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-correct-allowance True

erc20-transferfrom-correct-amount True

erc20-transferfrom-never-return-false True

erc20-transferfrom-revert-zero-argument True

erc20-transferfrom-false True

Detailed Results for Function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-change-state True

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

Detailed Results for Function approve

Property Name Final Result Remarks

erc20-approve-succeed-normal True

erc20-approve-correct-amount True

erc20-approve-revert-zero True

erc20-approve-false True

erc20-approve-never-return-false True

FORMAL VERIFICATION RT-PAY

APPENDIX RT-PAY

Finding Categories

Categories Description

Coding Style
Coding Style findings may not affect code behavior, but indicate areas where coding practices can be

improved to make the code more understandable and maintainable.

Coding Issue
Coding Issue findings are about general code quality including, but not limited to, coding mistakes,

compile errors, and performance issues.

Inconsistency
Inconsistency findings refer to different parts of code that are not consistent or code that does not

behave according to its specification.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases and

may result in vulnerabilities.

Logical Issue Logical Issue findings indicate general implementation issues related to the program logic.

Centralization
Centralization findings detail the design choices of designating privileged roles or other centralized

controls over the code.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

Details on Formal Verification

Some Solidity smart contracts from this project have been formally verified. Each such contract was compiled into a

mathematical model that reflects all its possible behaviors with respect to the property. The model takes into account the

semantics of the Solidity instructions found in the contract. All verification results that we report are based on that model.

The following assumptions and simplifications apply to our model:

Certain low-level calls and inline assembly are not supported and may lead to a contract not being formally verified.

We model the semantics of the Solidity source code and not the semantics of the EVM bytecode in a compiled

contract.

Formalism for property specifications

APPENDIX RT-PAY

All properties are expressed in a behavioral interface specification language that CertiK has developed for Solidity, which

allows us to specify the behavior of each function in terms of the contract state and its parameters and return values, as well

as contract properties that are maintained by every observable state transition. Observable state transitions occur when the

contract’s external interface is invoked and the invocation does not revert, and when the contract’s Ether balance is changed

by the EVM due to another contract’s “self-destruct” invocation. The specification language has the usual Boolean

connectives, as well as the operator \old (used to denote the state of a variable before a state transition), and several

types of specification clause:

Apart from the Boolean connectives and the modal operators "always" (written []) and "eventually" (written <>), we use

the following predicates to reason about the validity of atomic propositions. They are evaluated on the contract's state

whenever a discrete time step occurs:

requires [cond] - the condition cond , which refers to a function’s parameters, return values, and contract state

variables, must hold when a function is invoked in order for it to exhibit a specified behavior.

ensures [cond] - the condition cond , which refers to a function’s parameters, return values, and both \old and

current contract state variables, is guaranteed to hold when a function returns if the corresponding requires condition

held when it was invoked.

invariant [cond] - the condition cond , which refers only to contract state variables, is guaranteed to hold at

every observable contract state.

constraint [cond] - the condition cond , which refers to both \old and current contract state variables, is

guaranteed to hold at every observable contract state except for the initial state after construction (because there is

no previous state); constraints are used to restrict how contract state can change over time.

Description of the Analyzed ERC-20 Properties

Properties related to function transfer

erc20-transfer-correct-amount

All non-reverting invocations of transfer(recipient, amount) that return true must subtract the value in amount from

the balance of msg.sender and add the same value to the balance of the recipient address.

Specification:

requires recipient != msg.sender;

requires balanceOf(recipient) + amount <= type(uint256).max;

ensures \result ==> balanceOf(recipient) == \old(balanceOf(recipient) + amount)

&& balanceOf(msg.sender) == \old(balanceOf(msg.sender) - amount);

 also

requires recipient == msg.sender;

ensures \result ==> balanceOf(msg.sender) == \old(balanceOf(msg.sender));

erc20-transfer-exceed-balance

Any transfer of an amount of tokens that exceeds the balance of msg.sender must fail.

APPENDIX RT-PAY

Specification:

requires amount > balanceOf(msg.sender);

ensures !\result;

erc20-transfer-false

If the transfer function in contract RUBx fails by returning false , it must undo all state changes it incurred before

returning to the caller.

Specification:

ensures !\result ==> \assigned (\nothing);

erc20-transfer-never-return-false

The transfer function must never return false to signal a failure.

Specification:

ensures \result;

erc20-transfer-revert-zero

Any call of the form transfer(recipient, amount) must fail if the recipient address is the zero address.

Specification:

ensures \old(recipient) == address(0) ==> !\result;

Properties related to function allowance

erc20-allowance-change-state

Function allowance must not change any of the contract's state variables.

Specification:

assignable \nothing;

erc20-allowance-correct-value

Invocations of allowance(owner, spender) must return the allowance that address spender has over tokens held by

address owner .

Specification:

APPENDIX RT-PAY

ensures \result == allowance(\old(owner), \old(spender));

erc20-allowance-succeed-always

Function allowance must always succeed, assuming that its execution does not run out of gas.

Specification:

reverts_only_when false;

Properties related to function balanceOf

erc20-balanceof-change-state

Function balanceOf must not change any of the contract's state variables.

Specification:

assignable \nothing;

erc20-balanceof-correct-value

Invocations of balanceOf(owner) must return the value that is held in the contract's balance mapping for address owner .

Specification:

ensures \result == balanceOf(\old(account));

erc20-balanceof-succeed-always

Function balanceOf must always succeed if it does not run out of gas.

Specification:

reverts_only_when false;

Properties related to function transferFrom

erc20-transferfrom-correct-allowance

All non-reverting invocations of transferFrom(from, dest, amount) that return true must decrease the allowance for

address msg.sender over address from by the value in amount .

Specification:

APPENDIX RT-PAY

ensures \result ==> allowance(\old(sender), msg.sender) == \old(allowance(sender,

msg.sender)) - \old(amount)

 || (allowance(\old(sender), msg.sender) == \old(allowance(sender,

msg.sender)) && \old(allowance(sender, msg.sender)) == type(uint256).max);

erc20-transferfrom-correct-amount

All invocations of transferFrom(from, dest, amount) that succeed and that return true subtract the value in amount

from the balance of address from and add the same value to the balance of address dest .

Specification:

requires recipient != sender;

requires balanceOf(recipient) + amount <= type(uint256).max;

ensures \result ==> balanceOf(\old(recipient)) == \old(balanceOf(recipient) +

amount)

 && balanceOf(\old(sender)) == \old(balanceOf(sender) - amount);

 also

requires recipient == sender;

ensures \result ==> balanceOf(\old(recipient)) == \old(balanceOf(recipient));

erc20-transferfrom-fail-exceed-allowance

Any call of the form transferFrom(from, dest, amount) with a value for amount that exceeds the allowance of address

msg.sender must fail.

Specification:

requires msg.sender != sender;

requires amount > allowance(sender, msg.sender);

ensures !\result;

erc20-transferfrom-fail-exceed-balance

Any call of the form transferFrom(from, dest, amount) with a value for amount that exceeds the balance of address

from must fail.

Specification:

requires amount > balanceOf(sender);

ensures !\result;

erc20-transferfrom-false

If transferFrom returns false to signal a failure, it must undo all incurred state changes before returning to the caller.

Specification:

APPENDIX RT-PAY

ensures !\result ==> \assigned (\nothing);

erc20-transferfrom-never-return-false

The transferFrom function must never return false .

Specification:

ensures \result;

erc20-transferfrom-revert-zero-argument

All calls of the form transferFrom(from, dest, amount) must fail for transfers from or to the zero address.

Specification:

ensures \old(sender) == address(0) ==> !\result;

also

ensures \old(recipient) == address(0) ==> !\result;

Properties related to function totalSupply

erc20-totalsupply-change-state

The totalSupply function in contract RUBx must not change any state variables.

Specification:

assignable \nothing;

erc20-totalsupply-correct-value

The totalSupply function must return the value that is held in the corresponding state variable of contract RUBx.

Specification:

ensures \result == totalSupply();

erc20-totalsupply-succeed-always

The function totalSupply must always succeeds, assuming that its execution does not run out of gas.

Specification:

reverts_only_when false;

APPENDIX RT-PAY

Properties related to function approve

erc20-approve-correct-amount

All non-reverting calls of the form approve(spender, amount) that return true must correctly update the allowance

mapping according to the address msg.sender and the values of spender and amount .

Specification:

requires spender != address(0);

ensures \result ==> allowance(msg.sender, \old(spender)) == \old(amount);

erc20-approve-false

If function approve returns false to signal a failure, it must undo all state changes that it incurred before returning to the

caller.

Specification:

ensures !\result ==> \assigned (\nothing);

erc20-approve-never-return-false

The function approve must never returns false .

Specification:

ensures \result;

erc20-approve-revert-zero

All calls of the form approve(spender, amount) must fail if the address in spender is the zero address.

Specification:

ensures \old(spender) == address(0) ==> !\result;

erc20-approve-succeed-normal

All calls of the form approve(spender, amount) must succeed, if

the address in spender is not the zero address and

the execution does not run out of gas.

Specification:

APPENDIX RT-PAY

requires spender != address(0);

ensures \result;

reverts_only_when false;

APPENDIX RT-PAY

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER RT-PAY

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER RT-PAY

Elevating Your Entire Web3 Journey

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

RT-Pay Security Assessment CertiK Assessed on Jul 7th, 2025 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

